
January 18, 2016 14:27 Fifty Years of Mathematical Physics 10in x 7in b2339-ch05 page 510

510

A mer. Math. Soc. Transl. 
(2) Vol. 175, 1996 

The Differential Calculus on Quantum Linear Groups 

L. D. Faddeev and P. N. Pyatov 

ABSTRACT. The non-commutative differential calculus on the quantum groups 
SLq(N) is constructed. The quantum external algebra proposed contains the 
same number of generators as in the classical case. The exterior derivative 
defined in a constructive way obeys a modified version of the Leibniz rules. 

§1. Introduction 

Recent interest in constructing differential calculi on quantum groups stems 
from Woronowicz's pioneering work [33]. In it he formulated the general algebraic 
framework for dealing with the problem. In subsequent investigations the emphasis 
was on two main directions. First, experience in dealing with such algebras was 
accumulated while considering the simplest low dimensional examples (see, e.g., 
[32, 23, 27]). It was soon recognized that the true quantum group differential 
calculus should be bicovariant, and that this condition is very restrictive. Indeed, 
only the use of this condition allows one to obtain the unique external algebra 
construction for the SLq(2) Cartan 1-forms [13]. Next, a very close connection was 
established with the theory of quadratic quantum algebras (quantum spaces) [19, 
10, 31]. It was then realized that the coiJ.dition of unique ordering of higher order 
monomials (the so-called diamond condition) is very important [21, 28], and that 
in fact it must only be checked for cubic monomials [20]. 

Another direction of investigation was the search for an adequate technique 
for dealing with quantum differential algebras. Here the close connections between 
the quantum differential calculi and the R-matrix formulation for quantum groups 
and algebras [10] were soon established [16, 11, 34] (for further considerations see 
[6]). It turns out that the R-matrix technique is highly appropriate in treating the 
arising problems. 

The next stage of investigations was to combine both lines of research to obtain 
concrete differential algebra constructions for known series of quantum groups. Here 
substantial progress was achieved for the GLq(N) case. Namely, in the series of 
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papers [18, 29, 26, 28, 30] a pair of nice-looking differential algebras on GLq(N) 
was constructed. But the situation with the q-deformed series of simple Lie groups 
appears to be much more complex. The natural way of obtaining the SLq(N), 
SOq(N), and SPq(N) differential calculi by performing reduction from the GLq(N) 
calculi failed in the quantum case, because one cannot consistently reduce the 
number of the generating elements in the GLq(N) differential algebras constructed 
(see the discussion in [8, 35]). In principle one can treat these nonreduced (or 
partially reduced) differential calculi as a quantizations of nonstandard classical 
calculi on the special groups (see [22]), but the problem of finding the deformations 
of the ordinary calculi still remained open. It is rather natural in this situation 
to revise once again the basic postulates involved in the construction scheme. The 
only postulate that seems too restrictive is the classical Leibniz rule for the exterior 
derivative [11] 

d (f . g) = df . g + ( -1) If If . dg. 

Indeed, let us recall that the basic vector fields after quantization correspond to 
finite shifts rather than to infinitesimal differentiations. The natural Leibniz rule 
for them is multiplicative rather than being additive. Correspondingly, the Leibniz 
rule for the differential must take into account this shift property of vector fields. 

In this paper we propose a construction of the differential algebra with the 
appropriately modified Leibniz rule. We consider the case closest to GLq(N)-the 
SLq(N) differential algebra. Here only one Cartan 1-form and one basic vector field 
must be reduced. The reduction scheme for vector fields was already developed in 
[28]. We propose the reduction scheme for Cartan 1-forms. Here we do not discuss 
the involution leading to the unitary reduction of our system. As was shown in [2], 
this can be done for q on the circle ((q( = 1) for the algebra of vector fields and 
functions on the quantum group. We believe that the involution found in [2] can 
be extended to the differential forms as well. 

The paper is organized as follows. In §2 we fix the notation of the R-matrix 
technique and formulate the basic postulates of our construction. We believe that 
it was the consistent use of the R-matrix technique that allowed us to carry through 
the construction. This not only simplified the calculations, but played an important 
heuristic role. In §3 we present the external algebra on SLq(N). This algebra is also 
supplied with the action of the basic vector fields (or Lie derivatives). We refer to 
this extended algebra as the differential algebra on SLq(N). Section 4 is devoted to 
construction of the exterior derivative operator d. Note that the proposed scheme 
can be equally applied to GLq(N). In this way one can recover a wide variety of 
differential algebras on GLq(N). It seems to us that such a nonuniqueness is due 
to the fact that GLq(N) is not semisimple. 

§2. The basic principles and notation 

The starting point for our consideration is the Hopf algebras Fun ( G Lq ( N)) 
and Fun(SLq(N)) [10]. We present here some facts and definitions related to these 
algebras. 

We choose the corresponding R-matrix [15] R E MatN(C) 02 in the form 

(2.1) R = q L eii 0 eii + L eji 0 eij +A L ejj 0 eii, 

if.j j<i 
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where i,j = 1, ... , N and A = q- 1/q. In what follows we shall also use the 
shorthand notation R for the matrix R ®I E MatN(iC) 03 , where I E MatN(iC) 
is the unit matrix. One can easily distinguish, in the context of each formula, 
whether R belongs to MatN(IC) 02 or to MatN(iC) 03 . The R-matrix (2.1) satisfies 
the Yang-Baxter equation and the Heeke condition, respectively, 

(2.2) 

(2.3) 

RR'R = R'RR', 

R2 = 1+.\R. 

Here R' = I® R, and I = I® I. It is worthwhile to establish the connection with 
other frequently used R-matrix conventions: 

our R equals R12 = P12R12 = Rf2P12, 

our R-1 equals R]"2P12. 

Here P E MatN(C) 02 is the permutation matrix and the notation R 12 , R 12 , R"iz is 
presented in [10]. 

The unital associative algebra Fun(GLq(N)) is generated by N 2 elements T = 

( tij Wj=1. Multiplication and comultiplication in it are defined, respectively, by 

(2.4) 

(2.5) 

RTT'=TT'R, 

,6.(tij) = tik ® tkj, 

where T means T ®I in (2.4) and T' =I® T. 
The q-deformed Levi-Civita tensor c;~l···iN ( = c;~· .N in shorter notation) satis­

fies the following characteristic relations: 

(2.6) 1 ~ i ~ N, 

Here Ri = I®(i- 1) ® R ® I®(N-i- 1) (note: R1 = R, R2 = R'). The quantum 
determinant ofT, detq T, defined via the relation 

(2.7) c:~···NT1T2 ···TN= T1T2 · · · TNc:~· .. N = c;~···N · detq T, 

where n = I®(k- 1)®T®I®(N-k), is a central element of the algebra Fun(GLq(N)). 
This can be checked by means of the following formula 

(2.8) 

where \II= (7j;i)h1 E eN is an arbitrary vector. The Hopf algebra Fun(SLq(N)) 
is then obtained by adding one more relation 

(2.9) detq T = 1 

to (2.4). Finally, the antipodal mappingS(·) on Fun(GLq(N)) and Fun(SLq(N)) 
(for its explicit form see [10]) satisfies the relations 

(2.10) S(T)T = TS(T) =I; 

therefore, in what follows we prefer the notation r-1 to S(T). 
Now let us turn to the differential algebra of extensions of Fun(GLq(N)) and 

Fun(SLq(N)). First, we must fix the basic principles of our construction: 
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A. The bicovariance condition. Following [33], we require that a differential 
algebra should possess the bicomodule structure with respect to the underlying 
quantum group. By this condition we guarantee that the left and right translations 
in a quantum group do not affect the structure of its differential calculus. From this 
viewpoint it looks most natural to use, say, right-invariant and left-adjoint vector 
fields L = (li1)f:1=1 and Cartan 1-forms n = (wi1)f:1=1 in addition to the T's as 
the generating elements for differential algebra1. The left and right Fun(GLq(N))­
coactions in this case read: 

(2.11) 

where by X= (xij)f:1= 1 we understand either Lorn. 
In the case of the SLq(N)-differential algebra, the number of independent Car­

tan 1-forms should be reduced by 1. This can only be achieved in a bicovariant 
manner by use of the q-deformed trace [10, 24] (see also [34, 28, 12]). Here we 
define this operation and present several useful formulas 

(2.12) Trq(X) = Tr(VX), 1) = diag { q- N + 1' q- N +3' ... ' qN -1} . 

The Trq-operation possesses the invariance property 

(2.13) 

and also satisfies the relations 

(2.14) 

Trq( 2 ) (RX R- 1) = Trq(Z) (R-1 X R) = I· Trq X, 

Trq(1,2) (Rf(X, R) R-1) = Trq(1,z) f(X, R), 

Tr R± 1 ±NI Tr I [N] q(2) = q ) q = q . 

Here the index in parentheses denotes the number of the matrix space in which the 
operation Trq acts, and [N]q = (qN- q-N)/ >.. 

B. The ordering condition. We suppose that multiplication in the differential 
algebra is defined by relations quadratic in T, nand Land that these relations allow 
us to order lexicographically any quadratic monomial of the generators. Moreover, 
they must yield a unique ordering for any higher order monomial ofT, n and L. 
The latter is the so-called diamond (or confluence) condition (see, e.g., [7]). It 
guarantees us that the Poincare series of the classical differential algebra does not 
change under quantization. The direct verification of this condition consists in the 
use of the Diamond Lemma [7]. Such calculations appear to be very cumbersome 
already in theN= 2 case (see the discussion in subsection 3.8 of [21]) and it seems 
hard to generalize them to an arbitrary N. The alternative approach that we shall 
advocate here consists in noticing that the quadratic relations forT, n, L express in 
fact the action of some representation of the braid group on the differential algebra. 
The diamond condition is then the consequence of the braid group defining relations, 
so that it should follow from the general properties (2.2), (2.3) of the R-matrix. 
Examples of such formal R-matrix manipulations are presented in [14] and in §3 
of the present paper. 

C. The last but not least condition is that the differential algebra is to be 
supplied with a differential complex structure. In other words, we must define the 

1 For left-invariant and right-adjoint generators all the constructions proceed similarly. 
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C-linear differential mapping don it. Taking into account the discussion above, we 
choose the following set of its characteristic properties: 

• d is of degree 1 with respect to the natural Z-grading on the algebra of 
differential forms; 

• d satisfies the nilpotence condition: d2 = 0. 
Now let us proceed to the construction of such a differential algebra. 

§3. The differential algebra 

We summarize the main result of this section in 

THEOREM 1. For general values of the deformation parameter q ([2]q =/=- 0, 
[N]q =f. 0, [N]q =f. -A.qN, [N ± 1]q =/=- ±qN=f4 ) the GLq(N)-differential algebra 
defined as 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where 

(3.7) 

RTT' =TT'R, 

RDRD + DRDR-1 = K:q(D2 + RO? R), 

RDR-1T = TD', 

RLRL=LRLR, 

RLRT = q21NTL', 

R-1DRL = LRDR-1, 

K:q = [N]q + A.qN' 

admits a consistent reduction to S Lq ( N). This reduction is achieved by adding three 
more relations 

(3.8) detq T = 1, Trq D = 0, DetL = 1, 

to (3.1)-(3.6). Here 

(3.9) E; .. N Det L = q1-N (R1R2 · · · RN-1LI)N E; · N 

= q1-N (L1R1R2 ... RN-dN E; .. N 

PROOF. It is not difficult to check the bicovariance condition for (3.1)-(3.8) 
by using the commutation properties of T's (2.4) and the definitions for left and 
right transitions on the quantum group (2.5), (2.11). Here we only mention the 
transformation properties of Det L: 

8L(DetL) = 1®DetL, 8 R (Det L) = Det L ® 1. 

The validity of the ordering condition for the quadratic monomials ofT, D, L 
can be verified by rewriting relations (3.1)-(3.6) in matrix components. Instead, 
we can convince ourselves of its validity by noticing that relations (3.1), (3.2), (3.4) 
contain the correct number of the commutation relations for the T's, D's, and L's 
because of their symmetry properties 

p±(RTT'-TT'R)P± = p±(RLRL- LRLR)P± = 0 q q-q q-, 

P:(RDRD + DRDR- 1
- K:q(D2 + RD2 R))Pq=t=::::: 0. 
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Here pq± (±R + qCf- 1 )/[2]q are the quantum symmetrizer and antisymmetrizer, 
respectively (see [15, 10]). 

Now, let us concentrate on checking the diamond condition for monomials cubic 
in T, D, and L. First, we choose a suitable complete set of such monomials: 

(3.10) 
(R' RD) 3

, T(R'D) 2
, RTT'D", R' R- 1DR'- 1 RDR' RL, TT'T", 

(R'RL) 3
, T(R'L) 2

, RTT'L", R'- 1R- 1D(R'RL) 2
, TD'R'LR'. 

Here T" = T3 = I 02 0 T and the same is true for D" and L". The combinations 
(3.10) are constructed so that one can apply the "commutation rules" (3.1)-(3.6) 
to any adjacent pair of generators entering into them. We interpret this opera­
tion as the (q-)permutation of a pair of generators. Applying the q-permutations 
three times to the monomials (3.10), we arrange their entries in the inverse order. 
Obviously, this reordering can be performed in two different ways, depending on 
whether we first permute the left pair of generators or the right one. The diamond 
condition states that in both cases the result will be the same. We demonstrate how 
the calculations proceed in the most complex case of the (R' RD) 3-reordering. This 
example was already considered in [14] and here we present a simpler derivation. 

The calculations proceed as follows: 

(R' RD) 3 = RR' RDRDR' RD 

l 1 +-+2 perm. 

(3.11) l 2+->3 perm. 

l 1+-+2 perm. 

and in another way 

(R'RD) 3 =R'RDRR'RDRD 

l 2+-+3 perm. 

(3.12) l 1 +->2 perm. 

l 2+-+3 perm. 

- DRR'DRR'- 1DR- 1 R'- 1 + "'qDRR' (D2 + RD2 R) R'- 1 R- 1 • 

Here we use (2.2) and (3.2) through all the calculations. It remains to compare the 
"'q-terms arising under transformations (3.11) and (3.12). Here we need one more 
formula (see [14]), namely 

(3.13) 

It is derived as follows: denoting the left-hand side of (3.13) by U and using (3.2) 
twice, we obtain 

(3.14) U + "'qRUR = 0. 
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Now, dividing U into the sum of q-symmetric and q-antisymmetric parts U±, 

U± = U ± RUR±1
, Ptu+pq+ = pq±u_pq± = 0, 

1 + R- 2 

U = [2]~ (U+ + U_), 

we transform (3.14) into the following pair of relations 

(1- Kq)U_ = 0. 

Then, under restrictions (1 + KqR2
) f P;(, Kq i- 1, or, equivalently, [N ± 1]q i­

±qN+4, [N]q i- 0, we get the desired relation (3.13). 
Now one can compare the Kq-terms in (3.11) and (3.12), moving all the D2 

entries to the left. The result is the same in both cases and, thus, the diamond 
condition on (R' RD) 3 is satisfied. The same calculations, although simpler, can be 
carried out for all other monomials of (3.10), and we leave them as an exercise. 

It remains to check the consistency of the SLq(N)-reduction. The centrality 
of detq T is easily proved by using relation (2.8). Next, the application of Trq(2) to 
(3.2) and the subsequent use of the Heeke relation (2.3) give 

[Trqn,n]+ + >..qND2 = Kq([N]q + >..qN)n2 + Kq TrqD 2
, 

from which we conclude that Trq n anticommutes with n under the conditions that 
• the parameter Kq is chosen as in (3.7); 
• the quadratic scalar combination Trq D2 identically vanishes. 
The latter statement is a direct consequence of (3.2). It is derived as follows. 

Applying Trq(1,2)(· .. ) and Trq(1,2)(· .. R-1) operations to (3.2) and using (2.14), 
(2.3) we obtain a system of linear relations on the quadratic scalars (Trq D) 2 and 
TrqD2: 

2 (Trq D) 2
- [N]qKq Trq D2 = 0, 

->..(Trq n)2 + (2qN- Kq(qN + q-N)) Trq n2 = o. 

The determinant of this system, qN[2]~[N]q/([N]q + >._qN), does not vanish under 
the conditions of the theorem and, hence, we conclude that 

(Trq n) 2 = Trq n2 = o. 
Then, applying the Trq(2) operation to (3.3), (3.6), we see that Trq n is the (graded) 
central element in the algebra (3.1)-(3.7). 

Finally, to construct the central element from the L's, we use the following trick 
suggested in [2, 28, 9] (see also [35]). Consider the matrix Z = LT. It behaves 
like T under left and right transitions in GLq(N). Moreover, it possesses similar 
algebraic properties: 

RZZ' = ZZ'R, RLRZ =liN ZL'. 

Hence, Det L = detq Z · (detq T)- 1 is central in the algebra (3.1)-(3.6). Now, let us 
show that Det L indeed depends only on L: 

c; N · DetL = (L1T1)(L2T2) · · · (LNTN)c; N · (detq T)-1 

= qN-1 L1(R1L1R1) · · · (RN · · · R1L1R1 · · · RN)c; .. N 
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The expression (3.9) for Det Lis then extracted by using (3.4), (2.2) and performing 
induction inN. D 

COMMENT. Among the relations (3.1)-(3.6), only (3.3) is a completely new 
relation. Formula (3.2) was proposed in the N = 2 case in [13] and for general N 
in [14] as commutation relations for Cartan 1-forms on SLq(N). Formulas (3.4), 
(3.5) appeared in [1] as the algebra of functions on the cotangent bundle of GLq(N). 
The algebra of vector fields (3.4)-(3.6) was suggested in [28, 35] for the differential 
calculus on GLq(N) and SLq(N). The definition of quantum determinant Det L 
can also be found in these works and in [9]. Note also the recent paper [4], where 
the external algebra (3.1)-(3.3) was given in components in the N = 2 case. The 
really new point in our approach is that all these formulas are consistently combined 
into a single algebra. 

REMARK 1. Besides the algebra (3.1)-(3.8), there exist three more differential 
algebras on SLq(N). They can be obtained from (3.1)-(3.6) by substitutions of 
two types: 

(3.15) 

(3.16) 

S1 R ~R-1, : ~ ~q f-+ ~1/q 

S2 : R <-+ R- 1 , q <-+ q- 1 

in (3.2); 

in (3.3)-(3.6), (3.9). 

For N = 2, the substitution (3.15) is trivialized. Indeed, the relations (3.2) and 
S1·(3.2) in the case N = 2 differ by a term proportional to pq-(0.2 + R0.2 R) "' 
pq-0.2 pq- "' Trq 0.2 · pq-, and, since the scalar relation Trq 0.2 is contained both 
in (3.2) and S1·(3.2), it follows that relations (3.2) and S1·(3.2) for N = 2 are 
identical. This result agrees with the statement of [4] that there exist only two 
different external algebra structures on SLq(2). We should stress here that this 
mechanism does not work for N > 2, where we have 4 noncoinciding differential 
algebras. 

REMARK 2. The very limited number of q-deformations for the differential 
calculus on SL(N) seems to be a consequence of the simplicity property of SL(N). 
In contrast, one can derive a lot of quantized versions in the GL(N) case. For 
instance, if we omit the condition of the existence of the SLq(N)-reduction, then 
there is no need of fixing the parameters ~q and q21N in (3.2), (3.5). Another 
possibility is to use the following commutation rules for T and 0., which differ from 
(3.3), 

(3.17) RrlRT=Trl'. 

Algebras of that type were considered in [21, 18, 29, 26, 22, 28, 30, 35, 14]. 

REMARK 3. A few words on the interpretation of the basic vector fields L 
are in order. It is very natural to suppose that the algebra of classical vector 
fields V behaves under quantization like Uqg and, hence, is not quadratic. On the 
other hand, simple quadratic relations are achieved for different types of generators, 
namely L +, L- [10] and L [25, 3, 2, 27]. These generators constitute finite shifts 
on the quantum group and can be viewed as a kind of "exponentiated" form of 
infinitesimal vector fields L =I+ >.V + 0(.-\2

). That is why the SLq(N) reduction 
for L is not performed by the Trq-like condition, but by its exponentiated Det-like 
form. It is also natural from this point of view that the quantities Z = LT obtained 
from the T's by finite £-shifts behave algebraically like T's. 
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§4. The exterior derivative 

We shall define the differential mapping d on the external algebra (3.1)-(3.3) 
in a constructive way. 

1. We define the action of d on the generators T and D by setting 

( 4.1) dT=DT, 

2. For Cartan 1-forms, we postulate that the ordinary Leibniz rule is satisfied 

(4.2) d . D = D2 - D . d. 

Using (3.13), it is straightforward to check that this prescription agrees with the 
commutation relations for the D's (3.2). Besides, due to (4.2), the action of the 
exterior derivative on T and on any function F of Dis nilpotent: d2T = d2 F(D) = 0. 
Leaving aside the mathematical reasonings, we would like to stress that it is rather 
natural to retain the classical Leibniz picture for infinitesimal objects like D. 

Using rules 1. and 2. above, we can calculate the action of the exterior derivative 
on any monomial in T and D of first order in T. Namely, we must first move all 
the D's to the left by using the commutation relations (3.3), and then apply (4.1) 
and (4.2) to get d(F(D)T) = dF(D)T+F(-D)DT. In this way we automatically 
obtain the consistency of the differential mapping with the algebraic relations (3.3) 
and the nilpotence of d on any monomial of that type. 

The next step is to construct the differential mapping for the general quadratic 
monomial ofT: TT'. We stress here that since under quantization we obtain finite 
shifts L acting on T rather than differentiation, it is reasonable to expect modified 
Leibniz rules forT. The action of d should take into account the algebraic relations 
(3.1): 

Rd(T,T') = d(TT')R. 

Note also that the expression for d(TT') must be of first order in D. The general 
ansatz satisfying both these conditions reads 

(4.3) d(TT') = j(R)(D + RDR)TT'. 

Here f(R) is a function of R and the combination D + RDR commutes with the 
R-matrix due to the Heeke conditions (2.3). The exact form of the function j(R) 
is dictated by the nilpotence condition: 

0 = d2 (TT') = f{ (D2 + RD2 R)- f(D + RDR) 2 }TT'. 

Using (3.2), it is straightforward to obtain 

(D + RDR) 2 = (I+ K:qR2 )(D2 + RD2R), 

and, hence, d is nilpotent on TT' if we put2 

( 4.4) 

Using (3.3), (4.1)-(4.3), we can now see how d acts on any monomial ofT and that 
D is quadratic in T, and again the nil potence of dis guaranteed by ( 4.2). 

Thus, we have given a detailed consideration of the first few steps in the con­
struction of the differential mapping d. Generalizing this procedure to monomials 
of any order in T, we get 

2 Note that under the restrictions of Theorem 1 the matrix (I+ KqR2 ) is invertible. 
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THEOREM 2. For the external algebra (3.1)-(3.3) presented in Theorem 1 there 
exists a differential mapping d acting from the left, and defined by ( 4.1), ( 4.2), and 

(4.5) d(T1T2 · · ·Tk) ={I+ "'q(Sk(I)- I)}-1Sk(O)T1T2 · · ·Tb 

where 

(4.6) 

In particular, 

(4.7) 

(4.8) 

k-1 
Sk(X) =X+ L Ri ... R2RlXRlR2 ... Ri. 

i=l 

which guarantees the compatibility of d with the reduction conditions (3.8). This 
differential mapping commutates with the action of the basic vector fields L: 

(4.9) [d,L] = 0. 

PROOF. As in the case k = 2, we start with the following general ansatz: 

(4.10) 

Here fk is a function of R 1 , ... , Rk to be specified below, and 

(4.11) i = 1, ... 'k- 1. 

The first of the relations ( 4.11) is the restriction on the possible form of fk, while 
the last is a direct consequence of the Yang-Baxter equation (2.2) and the Heeke 
condition (2.3). By virtue of (4.11), we have 

i = 1, ... ) k- 1, 

and thus ansatz (4.10) is compatible with the relations (3.1) of the external algebra. 
The nilpotence condition d2 (T1 · · · Tk) = 0 leads to the relation 

It remains to compute the quantity (Sk(0)) 2 . This calculation, based on the es­
sential use of (3.2), (2.2), and (2.3), is rather lengthy. Here we only present the 
result 

(Sk(S1)) 2 ={I+ t£q(Sk(I)- I)}Sk(S12
). 

Hence, the function fk must be chosen as in (4.5). Note that with this choice fk 
satisfies conditions ( 4.11). 

In order to obtain formula (4.7), one must use properties (2.6) of the q-deformed 
Levi-Civita tensor, and also the relation 

El...N s (X)= ql-N Tr XEl...N q N q q . 

The verification of the compatibility of condition ( 4.9) with the algebra (3.4)-(3.6) 
is straightforward. D 
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REMARK 1. Using (4.1), (4.2), (4.5), and (3.2), (3.3), one can derive the explicit 
form of the modified Leibniz rules. These rules appear in modified form for T and 
0-polynomials for which the exterior derivative acting from the left must cross T 
under evaluation. For quadratic polynomials we have 

d ( TT') = (I + ""q R2
) -

1 
{ R2 dTT' + T dT'}, 

d(TO') = (1- ""q)T dO'+ dTO' + {(1- ""q) R2
- I}02T. 

Here the term 0 2 T may be treated either as dOT or as 0 dT. Note that the operator 
R2 , being the generating element of the braid group B 2 , plays a special role in these 
formulas. This observation is given further support if we evaluate the action of d 
on the monomials of any order in T: 

(4.12) 
k-1 -1 k 

d(T1 · · · Tk) = {I+ "'q ~ Bk,i} ~ Bk,iT1 · · · dTi · · · Tk, 

Bk,i = (RiRi+1 · · · Rk_l)(Rk-lRk-2 · · · Ri), 

Bk,k = l 0 k. 

i = 1, ... 'k- 1, 

Here {Bk,i}~=l is the set of generating elements of the braid group Bk. 

REMARK 2. Note that in constructing the differential mapping d, the self­
commutation relations forT (3.1) and 0 (3.2) are essential. The explicit form of 
the cross-commutation relations for T and 0 (3.3) is not relevant. We should only 
be aware of the fact that these relations allow us to move all the O's to the left in 
any monomial ofT and 0. Thus, the algorithm described can be applied equally 
well to the external algebras considered in [21, 18, 29, 26, 22, 28, 30, 35, 14] 
and to those satisfying cross-multiplication relations of the type (3.17). In this way 
one can search for all the external algebraic structures on GLq(N) compatible with 
the ordinary Leibniz prescriptions. It turns out that only two external algebras 
obtained in the references above satisfy this condition. The first of these algebras 
is defined by relations (3.1), (3.17) and (3.2) in which one must put "'q = 0. The 
second algebra is obtained from the first if one makes the substitution R +-7 R- 1 in 
all the formulas. This result agrees with the quasiclassical considerations of [5]. 

Acknowledgments. We would like to thank A. P. Isaev for fruitful collabo­
ration and stimulating discussions. 

References 

1. A. Yu. Alekseev and L. D. Faddeev, (T*G)t: A toy model for conformal field theory, Comm. 
Math. Phys. 141 (1991), 413-422. 

2. __ , Involution and dynamics in the system q-deformed top, Zap. Nauchn. Sem. Leningrad. 
Otdel. Mat. Inst. Steklov. (LOMI) 200 (1992), 3-16; English trans!. in J. Soviet Math. (to 
appear). 

3. A. Yu. Alekseev, L. D. Faddeev, and M.A. Semenov-Tyan-Shansky, Hidden quantum groups 
inside Kac-Moody algebra, Comm. Math. Phys. 149 (1992), 335-345. 

4. I. Ya. Aref'eva, G. E. Arutyunov, and P. B. Medvedev, Poisson-Lie structures on the external 
algebra of SL(2) and their quantization, Journ. Math. Phys. 35 (1994), 6658-6671. 

5. G. E. Arutyunov and P. B. Medvedev, Quantization of external algebra on a Poisson-Lie 
group, Preprint SMI-11-93 and hep-th/9311096. 

6. P. Aschieri and L. Castellani, An introduction to non-commutative differential geometry on 
quantum groups, Internat. J. Modern. Phys. A 8 (1993), 1667-1706; L. Castellani, !vi. A. 
R-Monteiro, A note on quantum structure constants, Phys. Lett. B 314 (1993), 25-30. 

 F
if

ty
 Y

ea
rs

 o
f 

M
at

he
m

at
ic

al
 P

hy
si

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
03

/2
5/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 18, 2016 14:27 Fifty Years of Mathematical Physics 10in x 7in b2339-ch05 page 521

521

46 L. D. FADDEEV AND P. N. PYATOV 

7. G. M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178-218. 
8. U. Carow-Watamura, M. Schlieker, S. Watamura, and W. Weich, Bicovariant differential 

calculus on quantum groups SUq(N) and SOq(N), Comm. Math. Phys. 142 (1991), 605-
641. 

9. B. Drabant, B. Jurco, M. Schlieker, W. Weich, and B. Zumino, The Hopf algebra of vector 
fields on complex quantum groups, Lett. Math. Phys. 26 (1992), 91-96. 

10. L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtadzhyan, Quantization of Lie groups 
and Lie algebras, Algebra i Analiz 1 (1989), 178-206; English trans!., Leningrad Math. J. 1 
(1990), 193-226. 

11. L. D. Faddeev, Lectures on Int. Workshop "Interplay between Mathematics and Physics", 
Vienna 1992 (unpublished). 

12. A. P. Isaev and Z. Popowicz, q-trace for quantum groups and q-deformed Yang-Mills theory, 
Phys. Lett. B 281 (1992), 271-278; A. P. Isaev and R. P. Malik, Deformed traces and 
covariant quantum algebras for quantum groups GLqp(2) and GLqp(1j1), Phys. Lett. B 280 
(1992), 219-226. 

13. A. P. Isaev and P. N. Pyatov, GLq(N)-covariant quantum algebras and covariant differential 
calculus, Phys. Lett. A 179 (1993), 81-90. 

14. ___ , Covariant differential complexes on quantum linear groups, Journ. Phys. A: Math. 
Gen. 28 (1995), 2227-2246. 

15. M. Jimbo, A q-analogue of U(gl(N + 1)), Heeke algebra, and the Yang-Baxter equation, Lett. 
Math. Phys. 11 (1986), 247-252. 

16. B. Jurco, Differential calculus on quantized simple Lie groups, Lett. Math. Phys. 22 (1991), 
177-186. 

17. P. P. Kulish and R. Sasaki, Covariance properties of reflection equation algebras, Progr. 
Theoret. Phys. 89 (1993), 741-761. 

18. G. Maltsiniotis, Groupes quantuques et structures differentielles, C. R. Acad. Sci. Paris Ser. 
I Math. 331 (1990), 831-834; Calcul diffe'rentiel sur le groupe line'arie quantique, Preprint 
ENS (1990); Le langage des espaces et des groupes quantiques, Comm. Math. Phys. 151 
(1993), 275-302. 

19. Yu. I. Manin, Quantum groups and noncommutative geometry, Universite de Montreal, Mon­
treal, 1988. 

20. ___ , Multipara metric quantum deformation of the general linear supergroup, Comm. 
Math. Phys. 123 (1989), 163-175. 

21. ___ , Notes on quantum groups and quantum de Rahm complexes, Teoret. Mat. Fiz. 92 
(1992), 425-450; English trans!. in Theoret. and Math. Phys. 92 (1992). 

22. F. Miiller-Hoissen, Differential calculi on the quantum group GLp,q(2), J. Phys. A: Math. 
Gen. 25 (1992), 1703-1734; F. Miiller-Hoissen and C. Reuten, Bicovariant differential calculi 
on GLp,q(2) and quantum subgroups, J. Phys. A: Math. Gen. 26 (1993), 2955-2976. 

23. P. Podles and S. L. Woronowicz, Quantum deformation of Lorentz group, Comm. Math. 
Phys. 130 (1990), 381-431. 

24. N. Yu. Reshetikhin, Quasitriangular Hopf algebras and invariants of tangles, Algebra i Analiz 
1 (1989), no. 2, 169-188; English trans!. in Leningrad Math. J. 1 (1990). 

25. N. Yu. Reshetikhin and M.A. Semenov-Tyan-Shansky, Central extensions of quantum cur­
rent groups, Lett. Math. Phys. 19 (1990), 133-142. 

26. A. Schirrmacher, Remarks on the use of R-matrices, Groups and Related Topics. Proceed­
ings, Wroclaw 1991 (R. Gielerak, J. Lukierski, and Z. Popowicz, eds.), Kluwer Academic 
Publishers, 1992, pp. 55-65. 

27. W. M. Schmidke, S. P. Vokos, and B. Zumino, Differential geometry of the quantum super­
group GLq(1j1), Z. Phys. C 48 (1990), 249-255. 

28. P. Schupp, P. \"'atts, and B. Zumino, Differential geometry on linear quantum groups, Lett. 
Math. Phys. 25 (1992), 139-147; Bicovariant quantum algebras and quantum Lie algebras, 
Comm. Math. Phys. 157 (1993), 305-329. 

29. A. Sudbery, Canonical differential calculus on quantum general linear groups and super­
groups, Phys. Lett. B 284 (1992), 61-65; Erratum, Phys. Lett. B 291 (1992), 519; The 
algebra of differential forms on a full matric bialgebra, Math. Proc. Cambridge Philos. Soc. 
114 (1993), 111-130. 

30. B. Tzygan, Notes on differential forms on quantum groups, Penn. Univ. Preprint (1992). 

 F
if

ty
 Y

ea
rs

 o
f 

M
at

he
m

at
ic

al
 P

hy
si

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
03

/2
5/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 18, 2016 14:27 Fifty Years of Mathematical Physics 10in x 7in b2339-ch05 page 522

522

THE DIFFERENTIAL CALCULUS ON QUANTUM LINEAR GROUPS 47 

31. J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nuclear 
Phys. B Proc. Suppl. 18 (1990), 302-312. 

32. S. L. Woronowicz, Twisted SU(2) group. An example of noncommutative differential calculus, 
Pub!. Res. Inst. Math. Sci. Kyoto Univ. 23 (1987), 117-181. 

33. ___ , Differential calculus on compact matrix pseudogroups (quantum groups), Comm. 
Math. Phys. 122 (1989), 125-170. 

34. B. Zumino, Introduction to the differential geometry of quantum groups, Proc. of Xth IAMP 
Conf. Leipzig 1991, Springer-Verlag, Berlin-Heidelberg, 1992. 

35. ___ , Differential calculus on quantum spaces and quantum groups, Proc. XIX-th ICGTMP 
Salamanca 1992, CIEMAT/RSEF Madrid, 1993. 

ST. PETERSBURG BRANCH OF THE STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27, ST. 

PETERSBURG 191011, RUSSIA 

BOGOLYUBOV THEORETICAL LABORATORY, JOINT INSTITUTE FOR NUCLEAR RESEARCH, 

141980 DUBNA, MOSCOW REGION, RUSSIA 

Translated by THE AUTHORS 

 F
if

ty
 Y

ea
rs

 o
f 

M
at

he
m

at
ic

al
 P

hy
si

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
03

/2
5/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.




